90 research outputs found

    Existence and stability of hole solutions to complex Ginzburg-Landau equations

    Full text link
    We consider the existence and stability of the hole, or dark soliton, solution to a Ginzburg-Landau perturbation of the defocusing nonlinear Schroedinger equation (NLS), and to the nearly real complex Ginzburg-Landau equation (CGL). By using dynamical systems techniques, it is shown that the dark soliton can persist as either a regular perturbation or a singular perturbation of that which exists for the NLS. When considering the stability of the soliton, a major difficulty which must be overcome is that eigenvalues may bifurcate out of the continuous spectrum, i.e., an edge bifurcation may occur. Since the continuous spectrum for the NLS covers the imaginary axis, and since for the CGL it touches the origin, such a bifurcation may lead to an unstable wave. An additional important consideration is that an edge bifurcation can happen even if there are no eigenvalues embedded in the continuous spectrum. Building on and refining ideas first presented in Kapitula and Sandstede (Physica D, 1998) and Kapitula (SIAM J. Math. Anal., 1999), we show that when the wave persists as a regular perturbation, at most three eigenvalues will bifurcate out of the continuous spectrum. Furthermore, we precisely track these bifurcating eigenvalues, and thus are able to give conditions for which the perturbed wave will be stable. For the NLS the results are an improvement and refinement of previous work, while the results for the CGL are new. The techniques presented are very general and are therefore applicable to a much larger class of problems than those considered here.Comment: 41 pages, 4 figures, submitte

    Exact Moving and Stationary Solutions of a Generalized Discrete Nonlinear Schrodinger Equation

    Get PDF
    We obtain exact moving and stationary, spatially periodic and localized solutions of a generalized discrete nonlinear Schr\"odinger equation. More specifically, we find two different moving periodic wave solutions and a localized moving pulse solution. We also address the problem of finding exact stationary solutions and, for a particular case of the model when stationary solutions can be expressed through the Jacobi elliptic functions, we present a two-point map from which all possible stationary solutions can be found. Numerically we demonstrate the generic stability of the stationary pulse solutions and also the robustness of moving pulses in long-term dynamics.Comment: 22 pages, 7 figures, to appear in J. Phys.

    Driven Macroscopic Quantum Tunneling of Ultracold Atoms in Engineered Optical Lattices

    Full text link
    Coherent macroscopic tunneling of a Bose-Einstein condensate between two parts of an optical lattice separated by an energy barrier is theoretically investigated. We show that by a pulsewise change of the barrier height, it is possible to switch between tunneling regime and a self-trapped state of the condensate. This property of the system is explained by effectively reducing the dynamics to the nonlinear problem of a particle moving in a double square well potential. The analysis is made for both attractive and repulsive interatomic forces, and it highlights the experimental relevance of our findings

    Stability of Waves in Multi-component DNLS system

    Get PDF
    In this work, we systematically generalize the Evans function methodology to address vector systems of discrete equations. We physically motivate and mathematically use as our case example a vector form of the discrete nonlinear Schrodinger equation with both nonlinear and linear couplings between the components. The Evans function allows us to qualitatively predict the stability of the nonlinear waves under the relevant perturbations and to quantitatively examine the dependence of the corresponding point spectrum eigenvalues on the system parameters. These analytical predictions are subsequently corroborated by numerical computations.Comment: to appear Journal of Physics A: Mathematical and Theoretica

    Nonlinear modes for the Gross-Pitaevskii equation -- demonstrative computation approach

    Full text link
    A method for the study of steady-state nonlinear modes for Gross-Pitaevskii equation (GPE) is described. It is based on exact statement about coding of the steady-state solutions of GPE which vanish as x+x\to+\infty by reals. This allows to fulfill {\it demonstrative computation} of nonlinear modes of GPE i.e. the computation which allows to guarantee that {\it all} nonlinear modes within a given range of parameters have been found. The method has been applied to GPE with quadratic and double-well potential, for both, repulsive and attractive nonlinearities. The bifurcation diagrams of nonlinear modes in these cases are represented. The stability of these modes has been discussed.Comment: 21 pages, 6 figure

    Conditional stability of unstable viscous shock waves in compressible gas dynamics and MHD

    Full text link
    Extending our previous work in the strictly parabolic case, we show that a linearly unstable Lax-type viscous shock solution of a general quasilinear hyperbolic--parabolic system of conservation laws possesses a translation-invariant center stable manifold within which it is nonlinearly orbitally stable with respect to small L1H3L^1\cap H^3 perturbations, converging time-asymptotically to a translate of the unperturbed wave. That is, for a shock with pp unstable eigenvalues, we establish conditional stability on a codimension-pp manifold of initial data, with sharp rates of decay in all LpL^p. For p=0p=0, we recover the result of unconditional stability obtained by Mascia and Zumbrun. The main new difficulty in the hyperbolic--parabolic case is to construct an invariant manifold in the absence of parabolic smoothing.Comment: 32p

    Perturbation-induced radiation by the Ablowitz-Ladik soliton

    Full text link
    An efficient formalism is elaborated to analytically describe dynamics of the Ablowitz-Ladik soliton in the presence of perturbations. This formalism is based on using the Riemann-Hilbert problem and provides the means of calculating evolution of the discrete soliton parameters, as well as shape distortion and perturbation-induced radiation effects. As an example, soliton characteristics are calculated for linear damping and quintic perturbations.Comment: 13 pages, 4 figures, Phys. Rev. E (in press

    The phase shift of line solitons for the KP-II equation

    Full text link
    The KP-II equation was derived by [B. B. Kadomtsev and V. I. Petviashvili,Sov. Phys. Dokl. vol.15 (1970), 539-541] to explain stability of line solitary waves of shallow water. Stability of line solitons has been proved by [T. Mizumachi, Mem. of vol. 238 (2015), no.1125] and [T. Mizumachi, Proc. Roy. Soc. Edinburgh Sect. A. vol.148 (2018), 149--198]. It turns out the local phase shift of modulating line solitons are not uniform in the transverse direction. In this paper, we obtain the LL^\infty-bound for the local phase shift of modulating line solitons for polynomially localized perturbations
    corecore